Water Summit – March 21, 2015

Farmer-led Efforts to Improve Water Quality

Presented by Sean McMahon

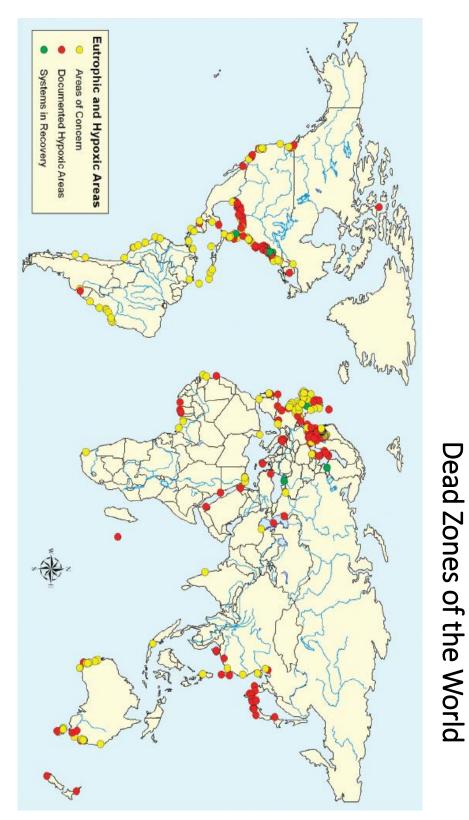
Iowa Agriculture Water Alliance

Mission

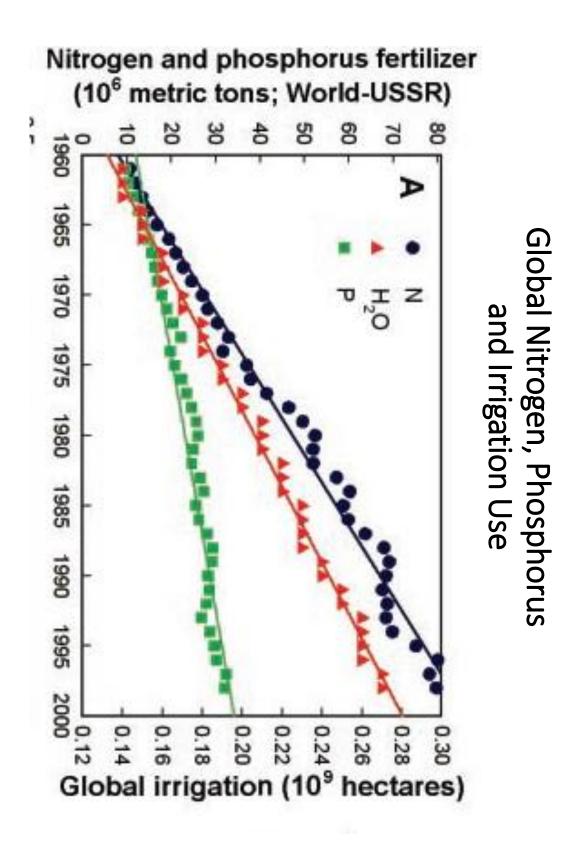
To increase the pace and scale of farmer-led efforts to improve water quality.

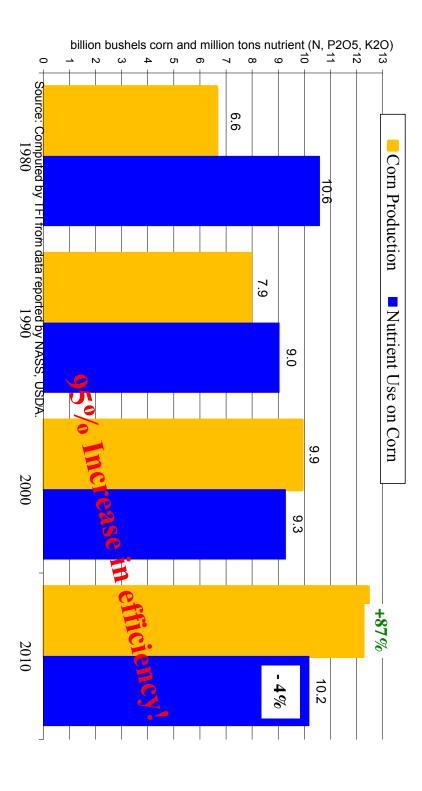
Founding Organizations

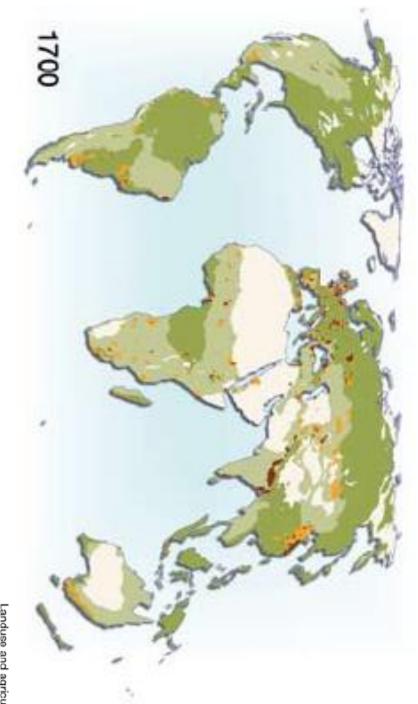
- Iowa Corn Growers Association
- Iowa Pork Producers Association
- Iowa Soybean Association


Iowa Agriculture Water Alliance

Overview

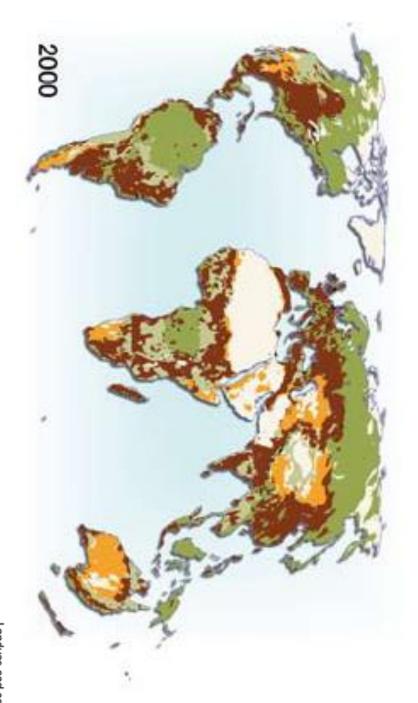

- Global state of water quality and footprint of Ag.
- lowa's importance to global food production
- Soil fertility plays a major role
- Population, consumer demand drive land use changes
- Avoided conversion of natural areas
- Water quality challenges in Iowa, U.S., Gulf of Mexico
- We didn't get here overnight won't solve it overnight
- Conservation practices proven to improve water quality


WATER ALLIANCE

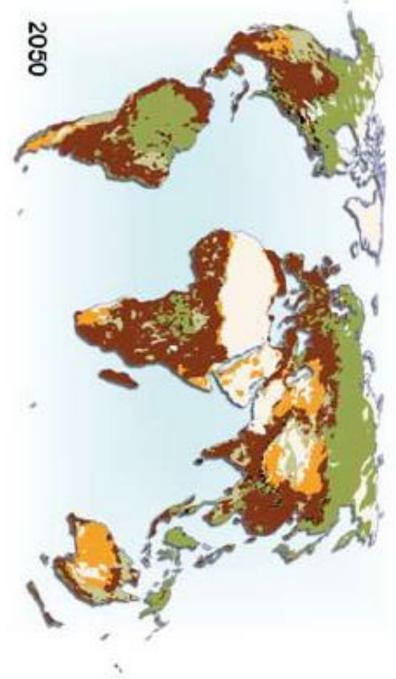


Major known eutrophic and hypoxic areas. Reprinted from Selman et al

U.S. Corn Production and Nutrient Use



Landuse and agriculture

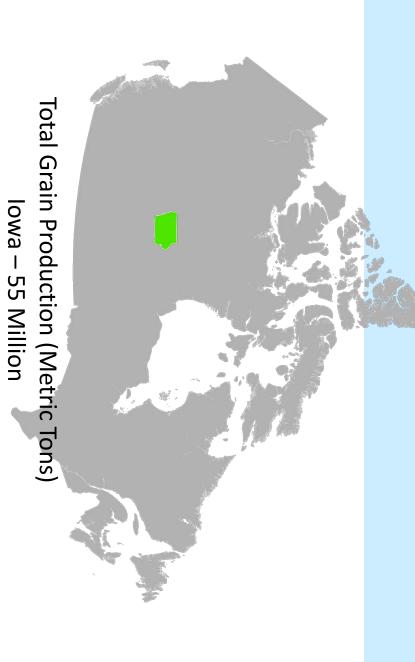

 Agricultural land
 Extensive grasslands (incl pasture),
 Regrowth after use

Grasslands

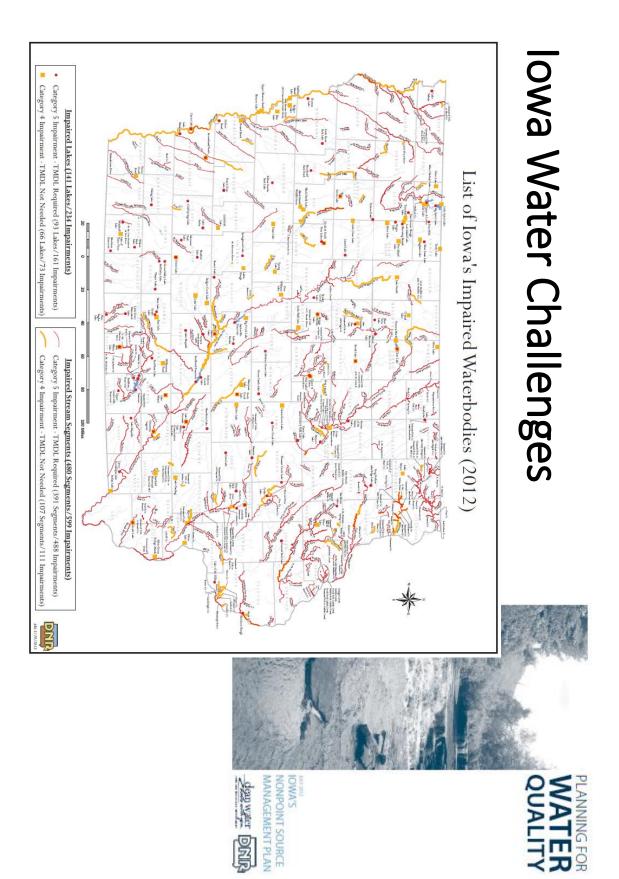
7



Landuse and agriculture Agricultural land

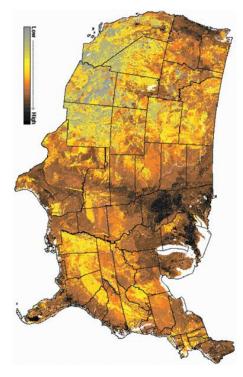

Extensive grasslands (incl pasture);
Regrowth atter use

Grasslands


Canada – 45 Million

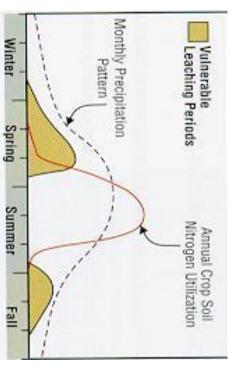
China – 15 Million Iowa – 14 Million

Nutrients Causing WQ Impairments


- >100,000 miles of rivers and streams,
- Approx. 2.5 million acres of lakes, reservoirs and ponds,
- > 800 square miles of bays and estuaries in the U.S.
- 166 coastal hypoxic areas or "dead zones" nationwide
- "nutrient pollution is widespread": 27% river and stream miles have high N, 40% have high P
- Stream biological condition:
- 55% poor, 23% fair;
- 9% more "good" N condition, 19% fewer "good" P condition

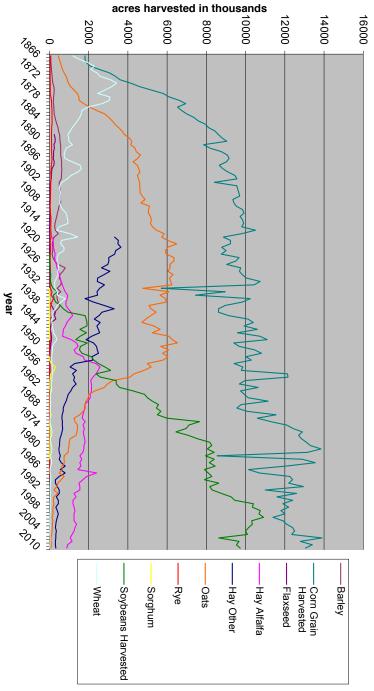
Source: 2013 EPA website: <u>http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm</u> <u>nttp://www2.epa.gov/nutrientpollution/effects-environment</u> ,

http://www2.epa.gov/nutrientpollution/where-occurs-lakes-and-rivers

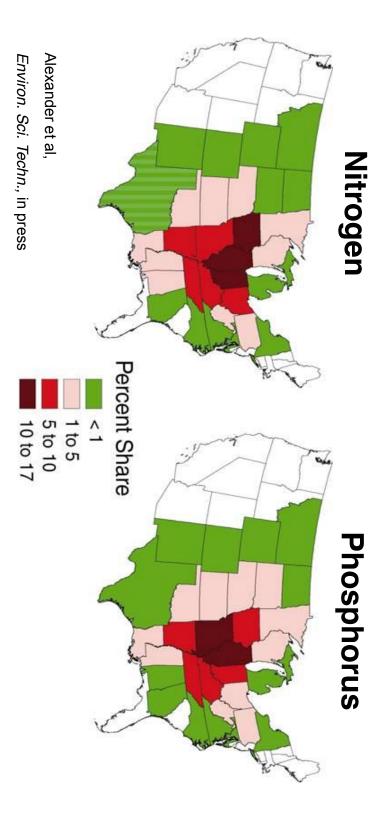


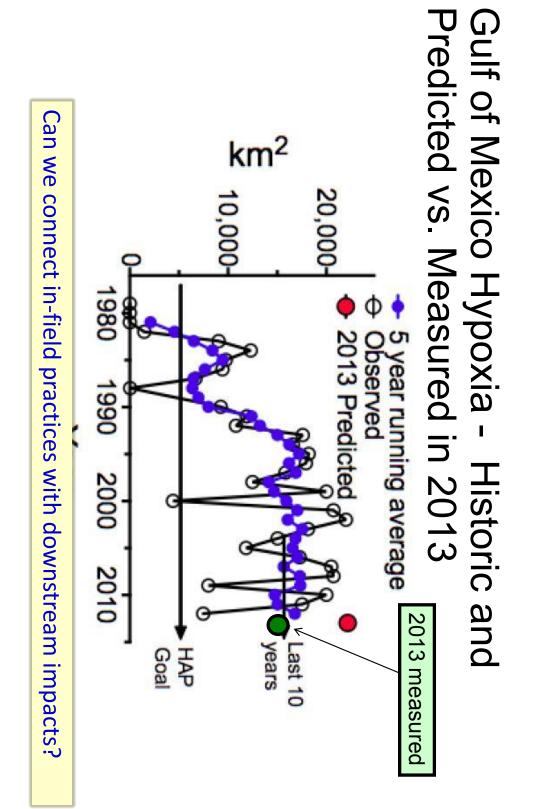
Soils Vulnerable to Leaching

- Current major cropping system leaves soil vulnerable to erosion and nutrient leaching.
- Markets and Technological Advances have shifted cropping patterns and increased productivity.
 Have the most tools available to date and will still
- Have the most tools available to date and will still continue to develop and adopt new technologies

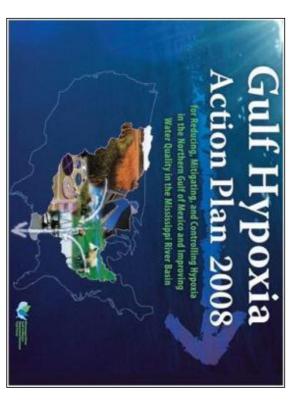

 Nutrient impairment is beyond the usual culprit of mismanagement of fertilizers and manures, but more to historic changes in land use and hydrology.

Changes in Land Use





Nutrient Delivery to Gulf of Mexico


State shares of the total annual nutrient flux

IOWA WATER QUALITY INITIATIVE

Moving From Strategy to Implementation

Iowa Water Quality Initiative

Nutrient Reduction Strategy

Leads

- Iowa Department of Ag and Land Stewardship
- Iowa Department of Natural Resources
- Iowa State University
- Released May 2013, after public comment period
- understanding of these systems/practices improves Living document meant to be adjusted as technologies are developed and
- Goal of 45% reductions in Total N and P

Nitrogen Practices

Nitrogen moves primarily as nitrate-N with water

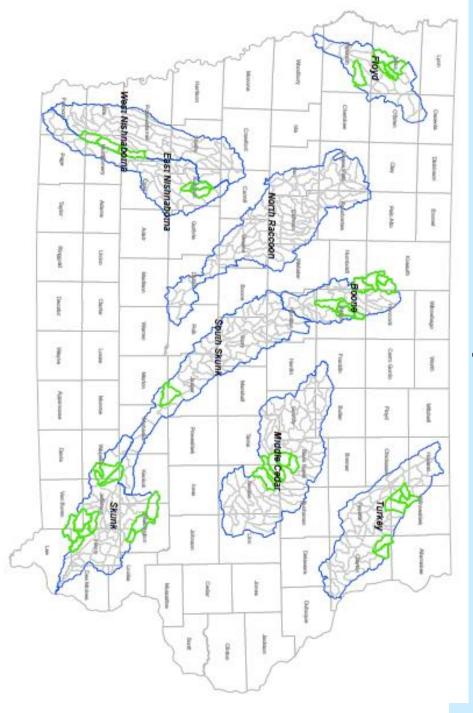
	Γ	Edge-	of-l	ielo	I	_	1	.and	l Us	e					Nitrogen Manag	jem	ent						
Saturated Buffers		Buffers	Bioreactors	Wetlands	Shallow Drainage	Drainage Water Mgmt.	Grazed Pastures	Extended Rotations	- cronnar	Parannial	Living Mulches	COVEL CLOPS	Court Cross	Nitrification Inhibitor	Nitrogen Application Rate	000000	Source			Timing			Practice
Nitrate-N by denitrification.	Divert fraction of tile drainage into ringrian huffer to remove	Only for water that interacts with the active zone below the buffer. This would only as the a fraction of all water that makes it to a stream.		Targeted water quality	No impact on concentration	No impact on concentration	No pertinent information from Iowa – assume similar to CRP	At least 2 years of alfalfa in a 4 or 5 year rotation	Land Retirement (CRP) – Compared to spring-applied fertilizer	Energy Crops – Compared to spring-applied fertilizer	e.g. Kura clover – Nitrate-N reduction from one site	Oat	Rye	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	Nitrogen rate at the MRTN (0.10 N:com price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator – http://extension.agron.iastate.adu/solifertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	Poultry manure compared to spring-applied fertilizer	Liquid swine manure compared to spring-applied fertilizer	Sidedress – Soil test based compared to pre-plant	Sidedress – Compared to pre-plant application	Spring pre-plant/sidedress 40-60 split Compared to fall-applied	Moving from fall to spring pre-plant application		Comments
50 (13)		91 (20)	43 (21)	52	32 (15)	33 (32)	85	42 (12)	(9) 58	72 (23)	41 (16)	28 (2)	31 (29)	9 (19)	10	-3 (20)	4 (11)	4 (20)	7 (37)	5 (28)	6 (25)	Average (SD*)	% Nitrate-N Reduction ⁺
								7 (7)			-9 (32)	-5 (1)	-6 (7)	6 (22)	4	-2 (14)	0 (13)	13 (22)**	0 (3)	10 (7)	4 (16)	Average (SD*)	% Corn Yield Change**

Phosphorus Practices

Phosphorus moves primarily with eroded soil

and E	ion Cor dge-of- ractice	Field		nd I han			Ph	osp	horus	Manag	ement	Practi	ces			
Control	Buffers	Terraces		Vegetation			Tillage	Cover Crops	Phosphorus	Placement of	Phosphorus	Source of	Abbinoacion	Phosphorus		Practice
Sedimentation basins or ponds			Grazed pastures	Land Retirement (CRP)	Energy Crops	No till compared to chisel plowing	Conservation till – chisel plowing compared to moldboard plowing	Winter rye	With seed or knifed bands compared to surface application, no incorporation	Broadcast incorporated within 1 week compared to no incorporation, same tillage	Beef manure compared to commercial fertilizer – Runoff shortly after application	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application	Soil-Test P – No P applied until STP drops to optimum	Applying P based on crop removal – Assuming optimal STP level and P incorporation		Comments
85	58 (32)	77 (19)	59 (42)	75	34 (34)	90 (17)	33 (49)	29 (37	24 (46)	36 (27)	46 (96)	46 (45)	17°	0.6 ^d	Average (SD ^c)	% P Load Reduction ^a
						-6 (8)	0 (6)	-6 (7)	0	0		-1 (13)	0	0	Average (SD ^c)	% Corn Vield Change ^b

Iowa Water Quality Initiative



WQI Demonstration Watershed Projects

- Targeted to Priority Watersheds to Provide:
- Demonstration of practices and technologies outlined in science assessment
- Foster partnerships with wide range of project stakeholders to leverage resources and expand audience
- Strong outreach/education components to provide information on practices and adoption of available practices detailed in the Science Assessment
- Local/regional hubs for demonstrating practices and providing practice information to tarmers, landowners, tarm managers, peer networks, etc.

WQI Projects

Iowa Water Quality Initiative

Statewide Efforts

- Statewide efforts
- Offer incentives to try a new practice from NRS Science Assessment
- Follow-up efforts to offer the information necessary to improve chances of successful implementation
- Any new practice adds complexity to already complex weather and management related variables
- Recruit the help of experienced farmers in providing assistance to new users.

Iowa Agriculture Water Alliance

Conservation Practices

- Cover Crops
- Nutrient Management
- Conservation Tillage
- Nutrient Treatment Wetlands
- Bioreactors
- Saturated Buffers
- Drainage Water Management
- Buffers, Grass Waterways, Terraces

Iowa Agriculture Water Alliance

Summary

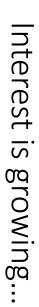
- Water quality challenges in lowa
- lowa's contributions to global food production are largely due to fertile soils
- Soil fertility also poses challenges for water quality
- We didn't get here overnight won't solve it overnight
- Voluntary practices are working

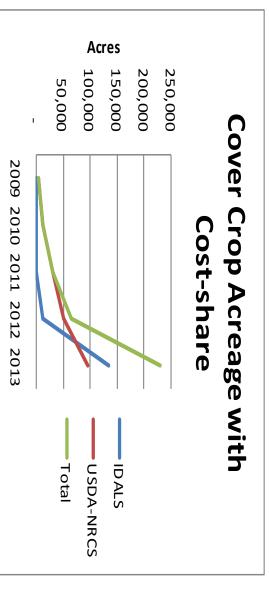
Acknowledgements for slides, data, research

- Cliff Snyder, International Plant Nutrition Institute
- Harry Vroomen, The Fertilizer Institute
- Matt Lechtenberg, Shawn Richmond, Iowa Department of Agriculture and Land Stewardship
- Todd Sutphin, Roger Wolf, Iowa Soybean Association

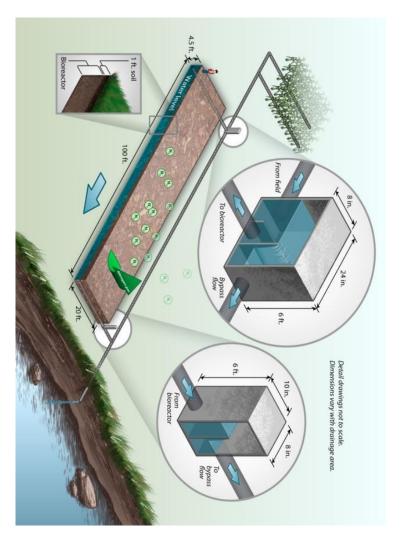
Sean McMahon

515-334-1480


smcmahon@iowaagwateralliance.com


Iowa Water Quality Initiative Iowa department of Agriculture & Land Stewardship

STATEWIDE EFFORTS



*Does not account for acres of Cover Crops done privately or through Conservation Stewardship Program contracts.

Drainage Water Treatment Woodchip Bioreactor

ISA EPS – 22 Bioreactors

- 12 actively monitoring Project with Iowa
- Project will lowa Nutrient Research Center

Drainage Water Treatment Woodchip Bioreactor

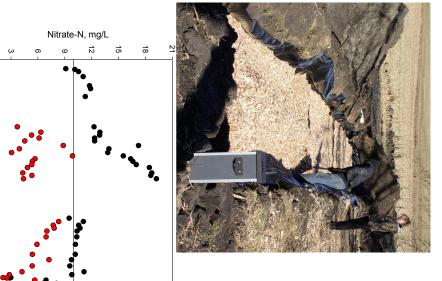
Woodchip Bioreactors for N removal. An innovative practice being applied in watersheds with nitrogen resource concerns. Water monitoring data to validate performance.

0 ct

Jan09

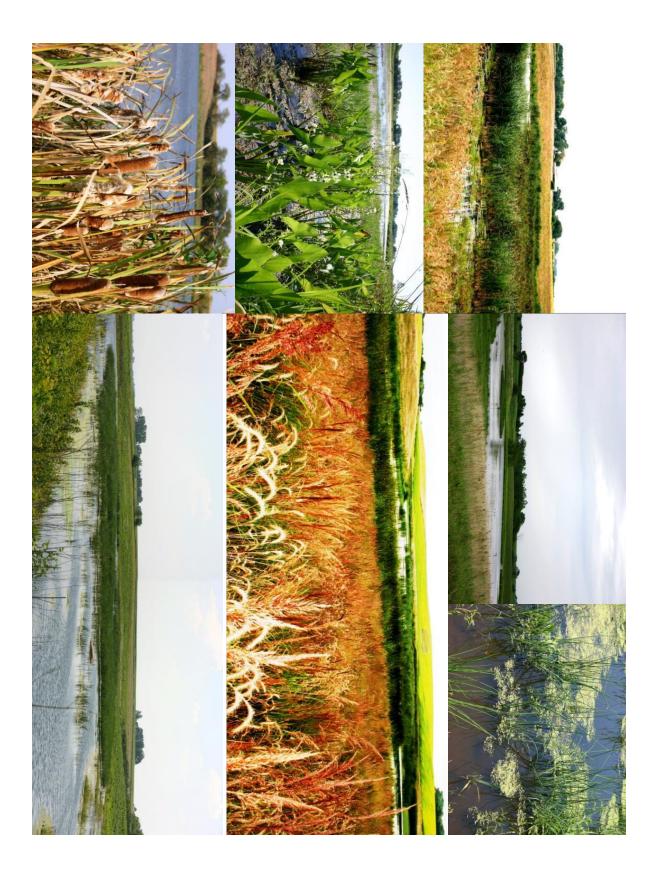
Apr

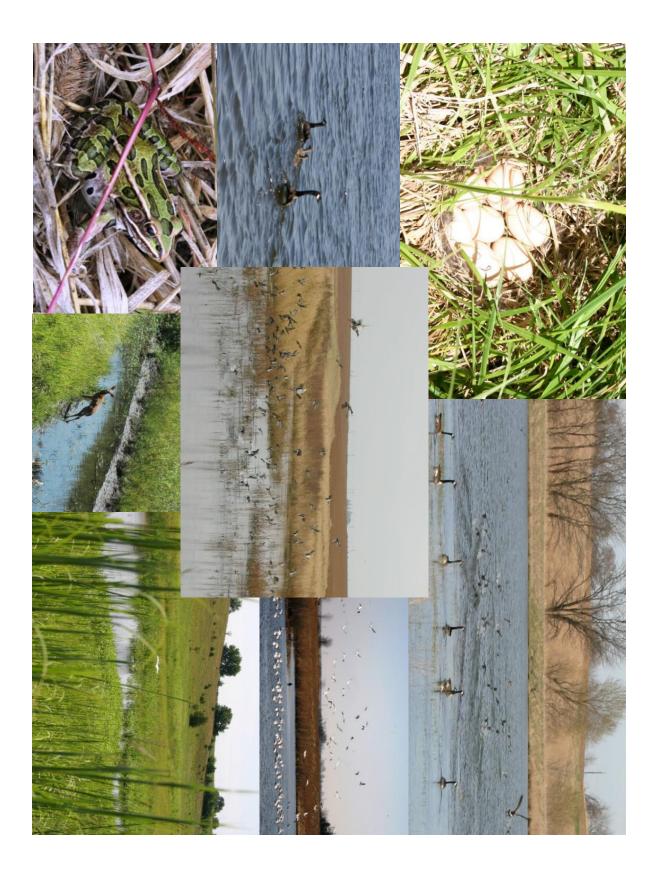
Ľ

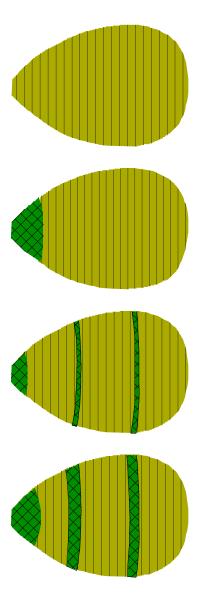

Oct

Jan10

Apr


Ľ


Incoming, Nitrate, mg/L
 Outgoing, Nitrate, mg/L
 Maximum Contaminant Level


Re-saturated Riparian Buffers

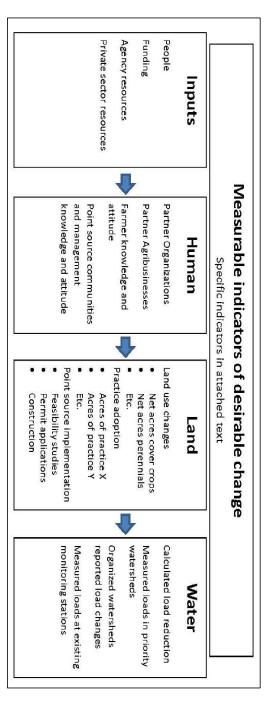
Prairie STRIPS

12 small watersheds – 1-8 ac: Random Incomplete Block Design: 3 reps X 4 treatments X 3 blocks

= corn and bean row crops

with just 10-20% of watershed converted to prairie. *60% reduction in water runoff; *88% reduction in N;*89% reduction in P

*sediment loss was reduced by more than 90 percent.


Iowa Water Quality Initiative

ONGOING EFFORTS

Measures of Success:

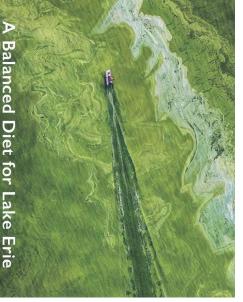
- Develop new and expanded frameworks to track progress, beyond ambient water quality monitoring
- conservation practice adoption Public/private template for gathering better baseline data and tracking load reductions resulting from
- Track aggregate practice adoption levels
- Report calculated/modeled load reductions from practice adoption

Iowa Water Quality Initiative

FUTURE EFFORTS

- Continue to support and build on statewide efforts
- RCPP funding build upon Targeted Demo Projects
- Other RCPP opportunities
- RFA currently open for Urban Conservation projects
- **RFA for additional Targeted Demonstration Watershed Projects**
- Expand funding into other practices detailed in the lowa NRS
- Sec. Northey's budget request for FY2016 for WQI at \$7.5M

Partnerships


Regulation vs Freedom to Operate

Water Works votes to sue 3 counties over nitrates -Des Moines Register

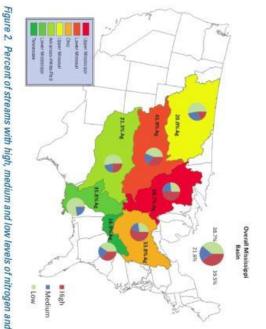
Battle Lines Drawn On EPA's Chesapeake Bay TMDL Authority

21 State Attorneys General's amicus brief, filed in February, also challenged EPA's authority over state authority.

IJC Report

Acknowledgements for slides, data, research

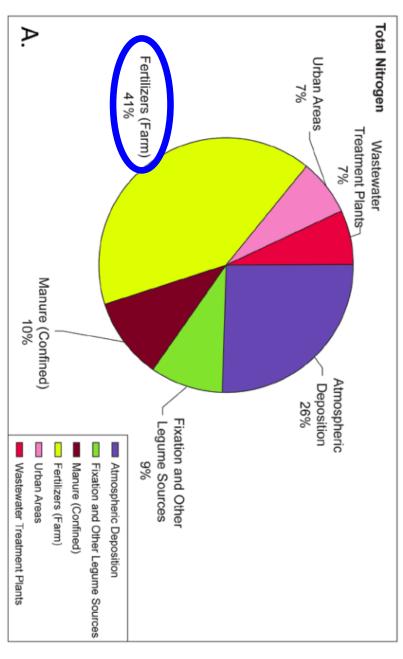
- Cliff Snyder, International Plant Nutrition Institute
- Harry Vroomen, The Fertilizer Institute
- Matt Lechtenberg, Shawn Richmond, Iowa Department of Agriculture and Land Stewardship
- Todd Sutphin, Roger Wolf, Iowa Soybean Association


Sean McMahon

515-334-1480

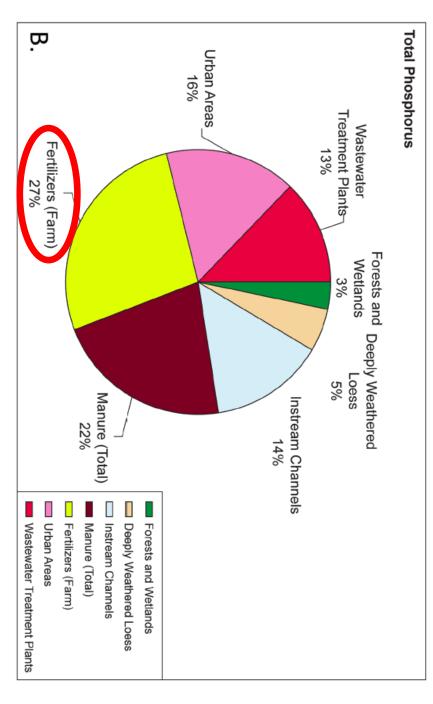
smcmahon@iowaagwateralliance.com

Wadeable Streams with High Nutrients


	-
	-
	-
	6
	N
	-
-	- CD
9	-
രം	6
-	-
0	0
m l	
2	
	0
~	1
0	
-	~
-	
Do	~
2	
-	- 60
0	1
-	
20	0
-	
0	5
P.o.	5
-	-
-	- 54
3	
-	
- 00	1
0	9
-	-
-	-
0	-
-	-
-	~
-	-
5	1
E.	E
IFa!	iun
Iral L	lium
Iral us	fium a
Iral us	lium a
Iral use	tium an
Iral use	fium and
Iral use (fium and i
Iral use (S	fium and lu
Iral use (Sc	fium and los
Iral use (Sou	fium and low
Iral use (Sou	fium and low
Iral use (Souri	tium and low lu
Iral use (Sourc	tium and low le
Iral use (Source	tium and low lev
Iral use (Source:	tium and low leve
Iral use (Source: 1	tium and low level
iral use (Source: M	tium and low levels
iral use (Source: W.	tium and low levels of
Iral use (Source: WS	tium and low levels o
Iral use (Source: WS/	tium and low levels of
iral use (Source: WSA)	tium and low levels of r
iral use (Source: WSA)	tium and low levels of ni
Iral use (Source: WSA)	fium and low levels of nit
Iral use (Source: WSA)	fium and low levels of nitro
Iral use (Source: WSA)	tium and low levels of nitro
iral use (Source: WSA)	fium and low levels of nitrog
Iral use (Source: WSA)	fium and low levels of nitroge
Iral use (Source: WSA)	fium and low levels of nitroge
Iral use (Source: WSA)	tium and low levels of nitrogen
Iral use (Source: WSA)	fium and low levels of nitrogen a
Iral use (Source: WSA)	fium and low levels of nitrogen a
Iral use (Source: WSA)	tium and low levels of nitrogen an
Iral use (Source: WSA)	tium and low levels of nitrogen and
Iral use (Source: WSA)	lium and low levels of nitrogen and
Iral use (Source: WSA)	gure 2. Percent of streams with high, medium and low levels of nitrogen and

	Phosphorus	Nitrogen
Total U.S. (lower 48)	30.9%	31.8%
Total MS River Basin	32.5%	39.5%
Upper Mississippi	23.4%	50.4%
Ohio	43.2%	54.6%
Tennessee*	18.1%	36.3%
Upper Missouri	22.4%	18.6%
Lower Missouri	27.7%	34.9%
Arkansas	41.2%	25.9%
Lower Mississippi*	38.6%	1.6%

* Small sample sizes in these sub-basins result in lower statistical significance


http://water.epa.gov/type/rsl/monitoring/upload/EPA-MARB-Fact-Sheet-112911_508.pdf

N Load to Gulf of Mexico USGS SPARROW Modeled Sources of Annual



Robertson and Saad. 2013. J. Environ. Qual. 42:1422–1440

Load to Gulf of Mexico USGS SPARROW Modeled Sources of Annual P

Robertson and Saad. 2013. J. Environ. Qual. 42:1422–1440

