water running off farm fields possible to reduce nitrates in Rural lowans are doing everything

Des Moines Register -lowa Sen. Randy Feenstra as reported by the

Nitrate in Iowa Rivers

- The Problem
- The Root Cause of the Problem
- The Solution

Effect of CROPPING SYSTEM on drainage volume NO₃-N concentration, and N loss in subsurface tile drainage during a 4-yr period (1990-93) in MN.

Cropping System Cont. Corn	Total Disharge Inches 30.4	Nitrate-N Conc. ppm 28	Loss Ib/A
Cont. Corn	Inches 30.4	ppm 28	
Corn - Soybean	35.5	23	
Soybean - C	35.4	22	
Alfalfa	16.4	1.6	
CRP	25.2	0.7	

FIGURE 5: Sources of Nutrients Delivered to the Gulf of Mexico

Iowa Nutrient Reduction Strategy

Table 1. Estimated percent load contributions from point and on-point sources.

% of Overall Load Reduction from Nonpoint 41 Sources to meet 45% Total Load Reduction Goal (Agriculture)	% of Overall Load Reduction from Point Sources 4 to meet 45% Total Load Reduction	% of Total Load from Non-point Sources 93 (Agriculture)	% of Total Load from Point Sources 7	Estimated % of Loads and Load Reduction Nitrogen
29	16	79	21	Phosphorus

Soil Nitrate Production vs. Crop Nitrate Uptake

In the shaded areas, the soil produces nitrate, but there is no crop to use it. As a result, some nitrate is lost to waterways.

Soil Nitrate Production vs. Crop Nitrate Uptake Addition of a Cover Crop

In the shaded areas, the soil produces nitrate, but there is no crop to use it. As a result, some nitrate is lost to waterways.

One Size Fits All

Grass waterways

One Size Fits All

- Grass waterways
- Buffer strips along stream banks
- along public drainage ditches Minnesota drainage laws require a minimum 16.5 foot (1 rod) buffer strip

One Size Fits All

- Grass waterways
- Buffer strips along stream banks
- Minnesota drainage laws require a along public drainage ditches minimum 16.5 foot (1 rod) buffer strip
- Proposed MN law: 50-foot buffer of river, stream, and ditch in the state vegetation along every perennial lake,

Cover Crops

Edge-of-Field Treatment of **Nitrate**

- Bioreactors
- Wetlands
- Denitrify the nitrate (change it to N₂ gas, which goes back to the atmosphere)

Reducing Nitrate

- More efficient N fertilizer: 10%
- Cover Crops: 31%
- Bioreactors: 43%
- Wetlands: 52%
- Perennials: 85%

What Might It Take to Reach Goals?

From Non-Point Sources for Nutrient Reduction Strategy Example: Combination Scenarios that Achieves N Goal

	Nitrate-N Reduction
Practice/Scenario	% (from baseline)
N management - Maximum Return to Nitrogen	
Application Rate and 60% of all Corn-Bean and	
Continuous Corn Acres with Cover Crop	Š
Edge-of-Field - 27% of all ag land treated with	7.
wetland and 60% of all subsurface drained land	
with bioreactor	
	<u>ה</u>

What Might It Take to Reach Goals?

From Non-Point Sources for Nutrient Reduction Strategy Example: Combination Scenarios that Achieves N Goal

	Nitrate-N Reduction
Practice/Scenario	% (from baseline)
N management - Maximum Return to Nitrogen	
Application Rate and 25% of all Corn-Bean and	
Continuous Corn Acres with Cover Crop	
Land Use - 25% of acreage with Extended Rotations	42
Edge-of-Field - 27% of all ag land treated with	
wetland and 60% of all subsurface drained land with	
bioreactor	
	16

Water Quality Plan

Soil Conservation Plan

Soil Conservation Plans

- Required for participation in federal farm programs
- Almost every lowa farm has one
- Universal Soil Loss Equation (computerized)
- Estimates soil loss from farming practices
- Must meet T Value ("tolerance")
- If plan doesn't meet T, must add more contour farming, etc. to meet T conservation practices (reduced tillage,

Water Quality Plans

- Already have extensive data on the water quality effects of farming practices
- Create WQ computer model, like for soil
- T values for N and P set to meet goals of **lowa Nutrient Reduction Strategy**
- 41% reduction in N pollution
- 29% reduction in P pollution
- meet T for N and P Farm WQ Plan must include practices that

National Water Quality Initiative

- Research (USDA-ARS)
- Extension/Education (Coop. Extension)
- Technical Assistance (USDA-NRCS)
- Financial Assistance (USDA-FSA)
- 1988
- Voluntary
- Voluntary Water Quality Merry-Go-Round

Iowa Nutrient Reduction Strategy

Table 1. Estimated percent load contributions from point and on-point sources.

% of Overall Load Reduction from Nonpoint Sources to meet 45% Total Load Reduction Goal (Agriculture)	% of Overall Load Reduction from Point Sources to meet 45% Total Load Reduction	% of Total Load from Non-point Sources (Agriculture)	% of Total Load from Point Sources	Estimated % of Loads and Load Reduction
41	4	93	7	Nitrogen
29	16	79	21	Phosphorus

60-min Cumulative Infiltration (cm)

% of Overall Load Reduction from Nonpoint Sources to meet 45% Total Load Reduction Goal (Agriculture)	% of Overall Load Reduction from Point Sources to meet 45% Total Load Reduction	% of Total Load from Non-point Sources (Agriculture)	% of Total Load from Point Sources	Estimated % of Loads and Load Reduction
41	4	93	7	Nitrogen
29	16	79	21	Phosphorus

Soybean Nitrogen Cycling & Budget

